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Abstract. As phishing threats intensify, incidents like the “COVID-19
vaccination form” phishing website underscore the limitations of rely-
ing solely on traditional firewall-based defenses. Consequently, there is a
growing inclination towards user-centered anti-phishing solutions, exem-
plified by training games such as What.Hack. But could we proactively
notify users in real time when they are on the brink of a scam or when
their attention wanes? Our research explores machine learning and eye-
tracking to identify email-reading weak spots and gauge a user’s risk of
succumbing to phishing lures. We put forth innovative hybrid models,
TransMLP Link and TransMLP Hybrid, melding the strengths of both
Transformer and MLP. Our method also facilitates consistent interpreta-
tion of eye-tracking data across varied email interfaces and displays. Our
TransMLP Hybrid model boasts an 88.75% accuracy rate, outperform-
ing the standard Transformer model. Our research points to the future
of anti-phishing tools that elegantly combine technological advancements
with insights into human behavior.
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1 Introduction

Phishing is a growing concern in the digital age. It involves seemingly genuine
emails, messages, and links that trick users into revealing personal data or down-
loading harmful software. The rise of such attacks, especially those leveraging
pandemic themes, has been alarming [2,9]. An infamous example is the fake
“COVID-19 Vaccination Form” site that falsely posed as an official NHS plat-
form, leading users into fraudulent vaccine registrations [19].

Traditionally, firewalls have been used to combat phishing by maintain-
ing updated blocklists and allowlists [7,13,14]. However, they struggled to
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Fig. 1. Overview of the Model Training and Real-World Prediction Process for Phish-
ing Email Detection.

counter new domains that are not yet listed [21]. As a solution, recent meth-
ods stressed the importance of educating users [3,24,30]. Training platforms like
What.Hack [30] have sprung up to strengthen this first line of defense. Nonethe-
less, an unsettling 95% of phishing breaches result from human oversights [1].
This brings forth a question: Can we alert users in real time if they are about
to fall for a scam or if their attention drifts?

To tackle this problem, we employed machine learning and eye-tracking tech-
niques to analyze how users engage with emails, aiming to predict their vulner-
ability to phishing. Our research delved into the Transformer model, assessing
its potential to gauge user focus; the Multilayer Perceptron (MLP) model, fine-
tuned for eye-tracking data; and innovative hybrid models, TransMLP Link and
TransMLP Hybrid, blending the best of both Transformer and MLP.

Moreover, we developed a technique to consistently interpret eye-tracking
data across various devices and email applications, associating specific gaze
points with their meaning in the email’s layout. This approach translated the
raw eye-tracking data into eight key areas reflecting the main regions of an email
interface. A detailed overview of our approach, from data collection to applying
our hybrid model in real scenarios, can be found in Fig. 1.

In our experiment with 25 participants, we gathered eye-gazing patterns and
user interactions while they interacted with genuine and phishing emails and
played the What.Hack anti-phishing game. We utilized the in-game data to train
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our phishing prediction models and the real-world data for testing. While the
Transformer model delivered an 80.63% accuracy, the TransMLP Hybrid model
stood out by achieving an impressive 88.75% accuracy rate.

In essence, our contributions are threefold:

1. The new design of hybrid models, TransMLP Link and TransMLP Hybrid,
synergizing Transformer and MLP.

2. The new approach to uniformly interpret eye-tracking data across diverse
email reading environments.

3. The experiment showcased the outstanding performance of TransMLP Hybrid
with an 88.75% accuracy.

In the evolving landscape of anti-phishing, the dual challenges of innova-
tive phishing tactics and human vulnerabilities necessitate more comprehensive
defense strategies. This paper studies the intricate relationship between email
reading behaviors, eye-tracking data, and their potential to inform machine
learning models that predict phishing susceptibility.

We begin by examining the historical context of phishing attacks and the
defense mechanisms in place, laying the groundwork for our innovative approach.
Subsequently, we elucidate our machine learning models, emphasizing the novel
integration of Transformer and MLP architectures. Following this, we detail our
designed experiment, setting the stage for a thorough analysis of our results and
their broader implications. By evaluating the effectiveness of our models and
examining the underlying factors, we present a feasible strategy that combines
advanced technological methods with deep insights into human behavior, paving
the way for a significantly enhanced anti-phishing defense.

2 Related Work

The related work section explores phishing tactics, human vulnerabilities, and
defense strategies designed to counteract these threats. The limitations of exist-
ing anti-phishing strategies led us to study the ability to leverage email reading
eye-tracking data to train machine learning models to predict phishing suscep-
tibility more effectively.

2.1 Phishing Email Attacks and Defense

Phishing is a cyber-attack where attackers pose as trustworthy entities to steal
credentials or introduce malware. Research has identified three primary human
vulnerabilities in defending against phishing attacks: a lack of system and secu-
rity knowledge [4], challenges in detecting visual deception [10], and inatten-
tion [20]. For example, phishing emails often employ deceptive hyperlinks and
subtle cues, such as spelling mistakes, to mislead users [12].

To address these vulnerabilities, a range of strategies has been developed to
counteract phishing due to user negligence. These include anti-phishing training,
active warning systems, and detection techniques using machine learning [8,16,
24,25,27,30]. Role-playing phishing simulation games [24,30] aim to increase
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users’ security knowledge and awareness, and alert mechanisms were designed to
notify users of potential threats [16]. Therefore, modeling how humans recognize
phishing emails and implementing protective measures are crucial in preventing
successful breaches.

Machine learning models are a mainstay in the detection of phishing
emails [23]. For instance, Shie et al. [25] utilized deep learning and feature
extraction to identify phishing emails. Additionally, Subasi et al. [27] assessed
Adaboost and other boosting algorithms for detecting phishing websites, lever-
aging a dataset from the UCI repository to improve classifier accuracy. Despite
these advances, even the most sophisticated machine learning model occasion-
ally misses phishing threats. Thus, creating automated detection methods for
phishing risks when users access their emails could provide an added layer of
protection, significantly reducing the chances of successful attacks.

2.2 Eye-Tracking for User Intention Prediction

The Eye-Mind Hypothesis (EMH) suggests that during a task, an individual’s
focal point and cognitive thought are intrinsically linked — what they see often
mirrors what they think [18]. In this context, eye-tracking data becomes pivotal
in decoding visual attention and cognitive operations. With this premise, we pos-
tulate that specific eye-tracking patterns might be indicative of an individual’s
vulnerability to phishing emails.

Recent research in intent recognition through eye-tracking [5,15,17,29] pre-
dominantly revolves around predicting the location or object of a user’s atten-
tion. A research direction in this area aims to forecast subsequent attentional
shifts of users [17,29]. For instance, leveraging eye movement patterns from VR
goggles, Nicolas et al. [26] developed a model to predict users’ upcoming focal
points. Deng et al. [11] utilized logistic regression to project user menu selec-
tions. Bhattacharya et al. [6] took a step further to investigate if readers’ eye
movements alone could gauge the authenticity of news headlines. Despite these
advancements, such models remain unable to assess user susceptibility to phish-
ing endeavors.

In a parallel development, Huang et al. [16] designed an array of visual cues
to deter phishing, aiding users in distinguishing malicious emails from legitimate
ones. However, the trigger for these alerts rests upon conclusive firewall detec-
tions. If a firewall deems an email safe, no alert is generated. This underscores
an opportunity: if we can determine a user’s lack of attentiveness while reading
a phishing email, a timely alert could also be triggered.

3 Prediction Models Design

The section explores machine learning models for analyzing email reading behav-
iors using eye-tracking data. We start with the Transformer model, detailing its
mechanics and applications in understanding user attentiveness. We then discuss
the Multilayer Perceptron (MLP) model and how to make it process eye-tracking
statistics. Finally, we introduce two new variant models, combining the best of
both Transformer and MLP, to better predict phishing email susceptibility.
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3.1 Transformer Model

Model Background: The Transformer model, proposed by Vaswani et al. [28],
addresses the performance bottlenecks of recurrent neural networks in processing
long data sequences. It comprises an encoder and a decoder, both stackable with
multiple layers that comprise the self-attention layer and the feed-forward layer.

While the self-attention mechanism of the Transformer model processes data,
it does not inherently consider the order of the input sequence. To enable
sequence processing, positional encoding (PE) is necessary. The formula for posi-
tional encoding is:

PE(pos,2i) = sin(pos/100002i/d), PE(pos,2i+1) = cos(pos/100002i/d), (1)

where d denotes the embedding vector’s dimension, pos signifies the position
in the data processing sequence, and i ∈ [0, d] represents the dimensions of the
positional encoding vector. 2i and 2i+1 designate the even and odd dimensions
of the positional embedding vector respectively.

The Transformer model may employ an h multi-head attention mechanism
to capture richer feature information, which is essential for our application’s
purpose. Within the multi-head self-attention layer, the input vector undergoes
three linear transformations to obtain the query vector Q, key vector K, and
value vector V . The formula for multi-head attention computation is:

MultiHead(Q,K, V ) = Concatenation(head1, . . . , headh)WO, (2)

where each headi represents the output vector of the i-th attention head, and
WO is a linear transformation matrix. The formula for each head is:

headi = Attention(QWQ
i ,KWK

i , V WV
i ), (3)

with the matrices WQ
i , WK

i , and WV
i being linear transformations. The

dimension of each head helps define the scaled dot-product attention:

Attention(Q,K, V ) = softmax

(
QKT√
d/h

)
V. (4)

The feed-forward network within the Transformer model is a two-layer neural
network, which employs residual connections [17] or layer normalization [5] to
facilitate model convergence and prevent gradient disappearance or explosion.

Model Implementation: We trained a series of Transformer-based models
using temporal features to perform binary classification on email reading behav-
ior. The aim is to determine whether users are careless about verifying the
authenticity of emails.
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The eye-tracking data for each user and email serves as a sequence input to
the Transformer model. The eye-tracking data are chronologically organized into
sequences according to the user’s history of processing emails.

To provide consistency in interpreting eye-tracking data, regardless of the
screen size or email application in use, we developed a method to map loca-
tion points from the eye-tracking data to their respective semantic meanings.
The transformed data comprises eight spatial attributes, specifically: Sender-
Information, SubjectText, Reply, ReportPhishing, ContentText, ContentsPanel,
Attachment, and LinkHovering. These attributes align with the core email func-
tions’ UI regions, as depicted in Fig. 2. Furthermore, our model incorporates a
temporal feature. Each feature vector captures the needed eye-tracking informa-
tion during each time step.

Fig. 2. Eye-tracking Mapping for Email Interaction Zones across Two Different Email
Application Interfaces.

Our Transformer encoder consists of two blocks, each containing one multi-
head self-attention layer and one feed-forward layer. Within the self-attention
layer, the input vector is divided into three segments, each of which undergoes a
linear transformation. Subsequently, these transformed segments are subjected
to scaled dot-product attention calculations. The resulting output vectors from
each head are combined and processed through a linear transformation matrix
to produce the final output of the self-attention layer as the input of the feed-
forward layer. The feed-forward layer includes two linear layers with a ReLU
activation function in between them. After the input undergoes transformation
by a fully connected layer, the activation function provides a nonlinear transfor-
mation. A subsequent fully connected layer further modifies the output, produc-
ing a tensor that maintains the input’s dimensions. Within each encoder block,
the input is processed by both the self-attention mechanism and the feed-forward
network, with the output being reintegrated with the original input through a
residual connection.
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3.2 Multilayer Perceptron Model

Model Background: The Multilayer Perceptron (MLP) model [22] employs
multiple layers of neurons to enact nonlinear transformations, facilitating the
extraction of higher-level features from input data. An MLP is composed of
input, hidden, and output layers. Each layer houses multiple neurons, and each
neuron processes the output from the preceding layer. The calculations per-
formed by a neuron involve both a linear transformation that weights the output
of the previous layer by the neuron’s own weights and a subsequent nonlinear
transformation via an activation function. This combination generates the neu-
ron’s final output. The computational formulation for MLP is given by:

r = f(W (L)f(W (L−1)f(W (L−2)...f(W (1)x+B(1))...+B(L−2))+B(L−1))+B(L)), (5)

in this equation, f denotes the activation function, x is the input data, and
W (i) and B(i) symbolize the weights and biases for the i-th layer, respectively.
Generally, the terminal layer of the MLP model uses the sigmoid function to
transform the previous network’s output into two probability values, and the
model picks the higher probability value as the final output.

Model Implementation: We employed an MLP model comprising six fully
connected layers, using ReLU as the activation function and incorporating a
dropout method to combat overfitting. The input to this model is derived from
eye-tracking data, which we processed into 16 statistical features. These features
come from eight previously identified spatial features related to the UI areas of
core email functions. For each spatial feature, we calculated two values: the
count and the total duration of user fixations. This data was then flattened
into a one-dimensional vector. The model produces an output in the form of a
probability value, representing the likelihood of a sample being a phishing email
that successfully deceives the recipient.

For the training phase, we opted for the Adam optimizer over the stochastic
gradient descent algorithm, enabling faster convergence and allowing distinct
learning rates for individual parameters. Furthermore, we set the learning rate
of each parameter group using a cosine annealing schedule to dynamically mod-
ify the learning rate, progressively decreasing it throughout training for better
control and stability.

For the loss function, we used the binary cross-entropy for better training
stability. This function is mathematically represented as:

Loss(y, p) = −(ylog(p) + (1 − y)log(1 − p)), (6)

in this equation, y represents the ground truth, indicating if the user failed to
recognize the deceptive phishing email. Meanwhile, p ∈ [0, 1] denotes the model’s
predicted probability that we aim to align with the y value.
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3.3 TransMLP Model Variants Design

Fig. 3. Architectures of Two Proposed TransMLP Variants.

TransMLP Link : The TransMLP Link model is a new variant that diverges
from the traditional Transformer model. The model integrates a multi-layer
transformer encoder to enhance input data feature extraction, as shown in
Fig. 3(a). In addition to this integration, the model employs an MLP model in
lieu of the standard single fully connected layer to facilitate nonlinear transfor-
mations on the Transformer output. This design choice enables the TransMLP
Link to achieve better nonlinear modeling capabilities relative to ML models
that rely solely on a single fully connected layer.

TransMLP Hybrid : Rather than merely linking the output of the Transformer
directly to the MLP’s input, we designed the TransMLP Hybrid model to har-
moniously integrate the strengths of both Transformer and MLP paradigms, as
shown in Fig. 3(b). This model harnesses eye-tracking statistical features derived
from time series data to train the MLP component. To produce the final output,
an ensemble learning strategy is employed, judiciously weighing the predictions
from both the Transformer and MLP models to optimize performance.

4 Experiment Design

Our experiment centered on leveraging eye-tracking data to enhance the ability
of machine learning models to assess the phishing risk of an email as read by
a user. We also aimed to evaluate the two Transformer model variants that we
proposed, TransMLP Link and TransMLP Hybrid, comparing their performance
to the basic Transformer model.
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4.1 Participant Recruitment

We collected eye-tracking and user interaction data from 25 participants (10
females and 15 males) for model training and testing. Participants were recruited
via social media and snowball sampling. The participants need to be over 18 years
old, have no prior training in anti-phishing, and be affiliated with the first
author’s institution, which was targeted by the collected real phishing emails.

4.2 Experimental Method

First, we gathered data from participants in real-world application settings to
assess their reactions to phishing and legitimate emails while using their every-
day email applications. We designed simulated interfaces mimicking Gmail and
NetEase Mail, which contained 6 phishing emails and 5 safe emails. These email
addresses and contents were sourced from actual reported phishing cases. During
the exercise, participants chose to reply or report the emails while we recorded
their gaze data using the 7invensun A3 eye tracking device.

Then, we captured their gaze behavior while they engaged with the anti-
phishing training game, What.Hack. This game comprises 5 levels, each empha-
sizing different email attributes to identify phishing attempts. In Level 1, volun-
teers inspected the sender’s email address. By Level 3, they were also evaluating
potential phishing links, and by Level 5, they assessed attachments alongside
previous checks. We observed that all participants had completed the game.

We recorded gaze positions, mouse movements, and link-hovering events
throughout these two activities.

4.3 Data Post-processing

For the dataset obtained from participants playing What.Hack, we preserved the
time series data for the Transformer model and computed the accumulated statis-
tical data for the MLP model. We collected a total of 18,720 eye-tracking fixation
events. We processed them into 1,019 events of user reaction to emails. We also
computed the overall fixation duration and the number of event occurrences. All
data has been anonymized. We will release the database1 after implementing
differential privacy measures to enhance user data protection.

5 Findings and Discussions

In our comprehensive analysis of phishing email susceptibility prediction models,
the TransMLP Hybrid model distinctly stood out for its accuracy and adaptabil-
ity to various phishing email challenges. Furthermore, our findings highlighted
that eye movement patterns offer valuable insights into factors that influence
prediction accuracy.

1 https://github.com/zikaiwen/EmailEye-PhishPredict.

https://github.com/zikaiwen/EmailEye-PhishPredict
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In the subsequent discussions, we introduced our novel technique for organiz-
ing eye-gazing data in email interfaces, ensuring consistent data collection across
diverse devices and email applications. Additionally, we discussed the potential of
merging malicious link detection with behavior-driven alerts, providing a robust
defense against phishing attacks.

5.1 Findings

Our three primary findings are the results from the model accuracy comparison,
the relationship between phishing email complexities and model error rates, and
the correlation between saccade counts and model error rates.

Model Accuracy Comparison: We evaluated the performance of three mod-
els: Transformer, TransMLP Link, and TransMLP Hybrid. The Transformer
achieved an accuracy of 80.63% in predicting the phishing email’s susceptibil-
ity. This accuracy saw a slight increase to 80.75% when augmented with MLP
using TransMLP Link. However, the TransMLP Hybrid, which was trained on
both game statistical and time series data, outperformed the others, achieving
an accuracy of 88.75%. This suggests the TransMLP Hybrid is the most effective
model when considering both statistical and sequential data. Detailed outcomes
are provided in Table 1.

Table 1. Accuracy Rates of Transformer, TransMLP Link, and TransMLP Hybrid
Models in Real-World and In-game Scenarios

Model Name Real-World Accuracy(%) In-game Accuracy

Testing(%) Training(%)

Transformer 80.63 80.88 82.58

TransMLP Link 80.75 79.90 82.21

TransMLP Hybrid 88.75 89.82 90.16

Phishing Email Difficulty and Prediction Error Rates: We delved into
the performance of the models as they predicted user intent during the game
What.Hack, which is designed with escalating complexities across its 5 levels to
simulate varying phishing email attributes. Starting at Level 1, participants pri-
marily focused on scrutinizing the sender’s email address. By Level 3, their eval-
uation expanded to include potential phishing links. By the time they reached
Level 5, they were also assessing email attachments in addition to their previous
tasks. Of all the models, TransMLP Hybrid stood out by consistently register-
ing the lowest error rate across every level of difficulty. Conversely, the other
two models struggled more with discerning user intent in the face of complex
phishing emails, as depicted in Fig. 4(a).
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Fig. 4. Model Performance Analysis. (a) represents the prediction error rate of different
models at different difficulty levels, and the vertical ordinate represents the prediction
error rate. (b) represents the statistical data of different saccades when different models
predict incorrectly, and the vertical ordinate represents the number of saccades.

Saccade Counts and Prediction Errors Rates: The average number of
saccades (rapid eye movements) observed when models made inaccurate predic-
tions was 18.37, with a median of 15.00. Notably, TransMLP Link exhibited more
errors when there were fewer saccades. Conversely, as the number of saccades
increased, the accuracy of TransMLP Hybrid predictions appeared to decline.
These trends are illustrated in Fig. 4(b).

5.2 Discussions

Modularizing Eye-Gazing Points in Email UI for Enhanced Feasibility
and Effectiveness: To ensure broader applicability and improved feature learn-
ing for classifying phishing email susceptibility, we developed a modularization
technique for eye-gazing location data. This method divides email application
interfaces into eight specific modules: SenderInformation, SubjectText, Reply,
ReportPhishing, ContentText, ContentsPanel, Attachment, and LinkHovering.
This structure enables the formation of a consistent dataset that is not tied to
absolute coordinate positions. It thus overcomes the challenges posed by differ-
ing screen resolutions and email applications, ensuring the collected data from
mouse and eye-gazing events remains relevant and usable.

Integrating Malicious Link Detection and Behavior Intervention for
Comprehensive Anti-Phishing: Building on our research, there is potential
to merge malicious link detection and behavioral intervention alerts. This holistic
approach, fusing user intent recognition, machine learning classification, and
effective UI warnings, can substantially lower the risk of phishing incidents.

6 Conclusion and Future Work

In our explorative research into machine learning’s capabilities, we honed in on
the Transformer model and its variants, particularly in the context of predicting
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phishing email susceptibility using eye-tracking data. Our ambition was to dis-
cern and understand the nuances of user attentiveness during email interactions,
with the goal of leveraging this information to optimize phishing risk evaluations.

Among the models we evaluated, the TransMLP Hybrid emerged as a clear
frontrunner. Its precision, coupled with its adaptability to diverse phishing sce-
narios, set it apart. Moreover, our study underscored the pivotal role that eye
movement patterns play in determining prediction accuracy. Even though the
TransMLP Hybrid model was exemplary in its performance. There lies an excit-
ing challenge in enhancing this model further by augmenting its model architec-
ture that marries eye-tracking data with other related behavioral indicators.

Looking ahead, our research has paved the way for several promising trajec-
tories. The innovative technique we introduced for standardizing eye-gazing data
in email interfaces marks a substantial advancement in ensuring consistent and
reliable data collection across varying platforms. Furthermore, our discussions
around merging malicious link detection with behaviorally-driven alerts have
underscored a pressing need and significant opportunity for creating comprehen-
sive defense mechanisms against phishing attacks. This multi-faceted approach,
blending technology with human behavioral insights, could form the cornerstone
of next-generation anti-phishing solutions.
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